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Abstract

Frictional contact is commonly represented in the Material Point Method (MPM) by algorithms based on multi-velocity fields, in

which the correction is performed at the background computational mesh. Typically for applications of various stiffness values,

these algorithms show a non-physical variation in the contact stresses along the interface surface. The lack of a smoothening

function in the detection procedure, which is essential in explicit finite element algorithms, contributes to the stress oscillation

and causes a gap between the bodies in contact. For MPM versions with a finite particle size, like Convected Particle Domain

Interpolation method (CPDI), the effect of the last shortcoming becomes more pronounced. Results can be improved by using

denser mesh, however, the computational cost will increase considerably.

In the present paper, the boundary of a continuum object is discretised separately from the MPM discretisation and traced

accurately during the solution advancement. Therefore, contact forces among different boundaries are evaluated using a penalty

function method commonly implemented in Lagrangian analyses. These forces are then mapped to the computational mesh, where

the momentum equation is solved, as an external force. The suggested approach is validated with a benchmark problem, where

the closed-form solution is available, and compared to the classical MPM contact algorithm. Furthermore, an application of two

bodies collision with large deformation is demonstrated.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Modelling frictional contact in mechanical engineering is a widely encountered problem, which has been effec-

tively simulated by MPM. Some of the recent applications that involve interaction of objects and being applied for

various engineering disciplines are presented in [1–5]. As the standard MPM formulation provides an automatic no-

slip condition, Bardenhagen et al.[6] introduce the early contact algorithm to relax the interaction between objects,

which they improved in additional work [7]. In this approach, the contact is detected when the material points of

different entities contribute to the same grid node of the background computational mesh. Therefore, interaction is

activated before the actual contact is taking place. Furthermore, the lack of a smoothening function in the detection

procedure causes oscillations in the contact stresses. Improvements have been introduced to refine the contact crite-

rion and to reduce the instability associated with a large difference in stiffness of the contacting materials [8,9]. To
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avoid the non-physical behaviour that correspond to the velocity field algorithm [7,10], an approach based on the com-

bination of multi-mesh is suggested by Hu and Chen[11], which has shown its applicability for different applications

[12,13].

In spite of the efforts to improve the resolution of the interaction in MPM, the interface is often smeared over

a region that is governed by the size of the background mesh. For advanced MPM versions, where spatial size is

assigned to the material points like CPDI or GIMP (Generalized Interpolation Material Point) method, the opening

between the bodies in contact becomes more pronounced [14–16]. Therefore, a more precise definition for the contact

surface is essential, which can be ensured using a Finite Element (FE) formulation. Thus, a coupling procedure of

a finite element structure with a material point continuum exhibits a more accurate and stable approach than pure

MPM [17,18]. In this regard, different interaction schemes to couple FE thin-structures with fluids or solids being

formulated in the MPM framework [19–21]. Chen et al.[1] advance the interaction between the MPM particles and the

FEM elements by formulating a particle-to-surface contact instead of the MPM grid-based method. In this approach,

the contact forces are calculated according to the Lagrange multiplier method where the MPM particles penetrate the

FEM element faces, which is suitable for penetration problems.

In the present paper, the penalty function method that is often implemented in explicit FE analysis is introduced for

CPDI, where the contact force in the normal direction is assumed proportionally to the residual of the impenetrability

constraints and the surface stiffness. Therefore, the surface of the continuum in MPM is discretised separately from

the volume discretisation. By setting an amount of mass to the interface, the surface nodes are able to follow the

deformation of the continuum. Upon the equation of motion, the surface nodes of individual entities might interact

according to the penalty function. Frictional forces are then traced back as an external contact force acting on the

boundary.

By presenting a short summary of the contact algorithms in this section, the remaining part of the paper is organised

as follows. The formulation of the contact condition in the framework of penalty function method is introduced in

Section 2, whereas the improved MPM algorithm including the searching scheme and the calculation of the contact

forces is highlighted in Section 3. In Section 4, the proposed procedure is first validated with the classical contact

method for a problem where the analytical solution is available. Moreover, the suggested method is verified for a large

deformation problem, which shows that the MPM penalty contact approach is in good agreement with a numerical

solution based on FEM. Finally, the paper is concluded in Section 5.

2. Penalty function method

The treatment of the contact problem with the constrained optimisation process is a demanding task as the displace-

ment constraints are unknown in advance. Therefore, it is often converted to a series of unconstrained optimisation

problems by using the Lagrange multiplier method or the penalty method. Although the penalty method provides

approximate solutions, it is widely used for its simplicity to satisfy the kinematic constraints in the weak sense. In this

method, if a region Γc where contact violation exists, the potential energy is penalised proportional to the amount of

the constraint violation by using a penalty function P, which is expressed as

P =
1

2
ωn

∫
Γc

g2
n dΓc +

1

2
ωt

∫
Γc

g2
t dΓc, (1)

where, ω is the penalty parameter, g is the gap function, and the subscripts n and t refer to the normal and tangential

direction, respectively. By adding Equation 1 to the total potential energy, the constrained minimisation problem is

converted to an unconstrained minimisation problem [22]. The contact variational form is obtained from the variation

of Equation 1, which yields

δP (u, δu) = ωn

∫
Γc

gn δgn dΓc + ωt

∫
Γc

gt δgt dΓc, (2)

in which, δ denotes the variation of a quantity, and u in the displacement vector. The gap functions are defined as

gn = (xs − xs̄) eT
n and gt = ‖t0‖

(
ξs̄ − ξ0

s̄

)
, (3)
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with xs is the position vector of the slave node s, s̄ being the projection of s on the master segment, and en is the

unit vector in the normal direction. The superscript 0 in Equation 3 denotes the values at previous time step, t is the

tangential vector, and ξ is the natural coordinate defined as

ξ =
1

‖t‖ (xs − x1)T et and 0 ≤ ξ ≤ 1, (4)

where x1 is the position vector of one of the master segment ends, et is the unit vector in the tangential direction.

Taking the variation of Equation 3 and back substituting the results to Equation 2 gives

δP (u, δu) = ωn

∫
Γc

gn eT
n (δus − δus̄) dΓc + ωt

∫
Γc

gt ‖t0‖
(‖t‖ eT

t (δus − δus̄) + gn eT
n δus̄,ξ

‖t‖2 − gn eT
n xs̄,ξξ

)
dΓc, (5)

which is discretised to the form

δP(u, δu) ≈
ns∑
i=1

δûT (ωn gn Cn + ωt gt Ct)i , (6)

where û is the nodal displacement, ns is the number of the slave nodes that penetrate into the master segments. Cn

and Ct in Equation 6 read [23,24]

Cn = N − gn

l
Q, and Ct = T +

gn

l
P, (7)

with
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−en
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0
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et

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (8)

where u1 and u2 are the displacement of the two ends of the master element, which has the length l. The final frictional

force expressed on the slave and master nodes is written as

f intr =

ns∑
i=1

(ωn gn Cn + ωt gt Ct) , (9)

in which f intr is the assembly of the interaction forces.

3. Improved contact algorithm

In this paper, the penalty function method is reformulated in the framework of MPM or CPDI. For this purpose,

an interface surface is defined along which the penalty function method is applied. The coupling of the surface mesh

with the MPM discretisation as well as the evaluation of the interface forces is highlighted in this section. In the

present implementation, the algorithm is applied for a two-dimensional CPDI program. However, the formulation can

be extended to three-dimensional problems in a straight forward procedure.

3.1. Discretisation of the interface surface

For the considered two-dimensional problem, the interface is discretised using two-node linear segments. Thick-

ness is assigned to the surface so that mass is allocated to the interface nodes according to the density of the continuum.

In all cases shown in this paper, a value of less than 1% of the entity thickness is assumed. Moreover, normal and

tangential stiffness should be specified, which can be the same as the elastic stiffness where the nodes are attached. It

is worth noting that exceeding the maximum stiffness of the system would influence the stability of the explicit proce-

dure. On the other hand, a penetration between entities might take place if the normal stiffness is reduced excessively.
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For numerical convenience and following the experience with the classical master-slave contact in the FE analysis,

the definition of master and slave depends on the discretisation and stiffness of the interacted objects as well as their

configuration.

In the present implementation, the bookkeeping of the surface nodes is separated from the material points database.

The position, velocity, mass, stiffness, and contact forces of each node are tracked during the solution. In case the

possible interaction zone is known a priori, the surface mesh can be defined for the intended region only. Within the

computation process, the interface nodes follow the MPM algorithm and update their location from the velocity field

obtained at the computational grid. After updating the location, a detection for the overlap of the interface nodes of

different entities is performed.

3.2. Detection of a contact pair

For most of the dynamic impact algorithms implemented in explicit schemes, the searching for the contact pair

consumes most of the computational time. Commercial FE software frequently adopt a bucket-sorting algorithm to

reduce the number of required iteration, which is also implemented for a coupling between FEM and MPM [1]. In

the present work, the detection of the contact pairs is performed in three steps, which has shown to be quite efficient

and accurate. The first step is to check whether the momenta of different interface discretisations contribute to the

same computational node. Elements attached to this node are then tagged as a zone containing a surface node that

potentially might be in contact. Hence the next iteration will be carried out for the surface nodes that are located inside

the tagged elements, which is usually much smaller than the total number of surface nodes. The second step of the

search algorithm is to check if the distance between a node of an entity and another node of a different entity is smaller

than a minimum search size. For the explicit procedure being adopted, where the propagating wave is restricted by

the grid size during a time step, the computational grid spacing is used as the minimum search size. The last step to

define a node-segment pair is to satisfy the following conditions

gn < 0 and 0 ≤ ξ ≤ 1, (10)

where the first condition ensures that the slave node penetrates into the master segment, whereas the other checks that

the slave node is within the space of the master element.

3.3. Calculation of the contact forces

If a pair of a slave node and a master segment is established, the resisting force to oppose the penetration is evalu-

ated from Equation 9. After assembling the global vectors, a predictor-corrector procedure to improve the resolution

of the nodal forces can be performed. However, the error in the force estimation is assumed to be small when explicit

time step is considered and therefore no iteration procedure is performed in this paper. In order to couple the surface

mesh with the MPM solution, the contact forces are mapped from the one-dimensional boundary mesh to the four-

node computational mesh via

f cont
i =

nc∑
j=1

N j
i f intr

j , (11)

in which nc is the total number of the contact nodes, N j
i is the shape function of the computational node i being

evaluated at the location of the boundary node j, f cont is the contact forces expressed at the computational grid. The

interaction of the bodies will contribute then to the momentum equation of an entity through

mi ai = f int
i + f ext

i + f cont
i , (12)

with mi is the lumped mass at grid node i, a is the nodal acceleration, and f int and f ext are the internal and external

force vectors, respectively.
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4. Applications

In this section, the proposed procedure is validated with a closed-form solution of a cylinder rolling on an inclined

surface and is compared to the classical MPM algorithm based on multi-velocity fields [6,7]. In the other application,

the collision of two elastic rings is simulated in which a finite element solution is adopted as a reference.

4.1. Cylinder rolling on inclined plane

Owing to the present two-dimensional implementation, the problem of a sphere rolling on an inclined surface pre-

sented by Bardenhagen et al.[7] is replaced here with a cylinder. As an improved MPM version, CPDI is used in the

present analysis where the proposed and the classical contact algorithms are tested. In this problem, a cylinder of

radius 1.6 m is rolling on a plane of 20 m long and 0.8 m thick. The inclination of the plane for two different cases

are: 60◦ and 45◦ with a corresponding surface coefficient of 0.286 and 0.495. As boundary conditions, the bottom

and the sides of the plane are completely fixed. The first case will be referred to as slip whereas the other as no-slip
contact case. The hyperelastic material model of Neo-Hookean is adopted with the following mechanical properties

for the rolling cylinder: bulk modulus 6 MPa, shear modulus 3 MPa, and a density of 1 g/cm3. The plane follows the

same elastic constitutive model, while the aforementioned properties are multiplied by a factor of ten. A gravitational

acceleration of 10 m/s2 is considered for all cases.

A plane-strain analysis is performed using a computational mesh of a four-node regular cell of 0.4 m size. Irregu-

lar CPDI discretisation is selected, see Figure 2, in which the maximum particle size is 0.2 m. An interface layer of

0.001 m is discretised using a two-node element of 0.1 m size, which gives in total 517 linear segments. The analytical

solution for the position of the centre of a rigid cylinder rolling on a surface is given by

ds (τ) =
5

2

(√
3 − 2

7

)
τ2 and dn (τ) =

5
√

2

3
τ2, (13)

with ds and dn being the position along the plane at time τ for the slip and no-slip case, respectively.

The numerical solution is performed by evaluating the initial gravity stresses at zero inclination, which is then

followed by a sudden tilt of the plane and the cylinder. For the sake of comparison, the proposed method together

with the classical MPM contact algorithm [10] are illustrated in Figure 1. In both slip and no-slip cases, the proposed

scheme based on penalty function exhibits better results as compared to the MPM contact approach. The slow motion

of the MPM algorithm is attributed to the initial position of the two bodies where no gap is assumed. In the formulation

of the classical MPM contact, however, the detection of material points interaction is initiated within the influence of

one computational grid. Therefore, the resistance force is overestimated until a gap is formed as illustrated in Figure

2. Although the initial prediction of the velocity for both numerical approaches matches the analytical values, see

Figure 1, the classical method shows a variation in the linear increase of the velocity. On the other hand, the approach

based on the penalty function gives a straight line for the velocity variation, except for the last part of the no-slip case.

4.2. Collision of two elastic rings

In order to validate the efficiency and accuracy of the proposed contact algorithm, the problem of two elastic

rings collision is reproduced. In this problem, the interface along the interaction of the deformable bodies is severely

distorted. As described in [25] and the references mentioned therein, the two rings have an inner and outer diameter

of 60 and 80 mm, respectively. The two are placed 4 mm apart. Each ring has a density of 1.01 g/cm3, bulk modulus

of 121.7 MPa, a shear modulus of 26.1 MPa, and follows the Neo-Hookean model adopted earlier. An initial velocity

of 30 m/s is assigned to the two rings in opposite directions. Uniform regular computational mesh of 2 mm cell size is

employed, whereas the particle size of the CPDI domains is 0.5 mm. The surface is discretised with 2 mm mesh size

while a friction coefficient of 0.1 is assumed.

As a reference solution, the software ABAQUS is selected where the penalty algorithm is implemented in the

FE framework. In this analysis, the rings are discretised with 2 mm mesh size. Furthermore, similar routine of the

constitutive model in CPDI is integrated in FEM. As depicted in Figure 3, the present algorithm is able to capture
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Fig. 1. Displacement and velocity of the centre point of the rolling cylinder: (upper row) slip, and (lower row) no-slip contact.

g

initial position
MPM contact

penalty

60◦

Fig. 2. Initial and finial location of the slip case of the rolling cylinder showing the gap of the MPM contact.

the highly dynamic behaviour of the collision. Moreover, the suggested mapping procedure of the contact forces to

the computational grid in Equation 11 provides a weighted average of the interface forces and eventually produces

fairly smooth contact stresses. For the same reason, symmetric deformations and stresses are observed across the

line of symmetry. During the collision, the contact forces of the two analyses are monitored as shown in Figure 4.

Although this application is considered as a multi-contact problem where the configuration of the interface is evolving

during the continuous deformation, the trend shows that the contact forces of the two schemes are in good agreement.

Beyond 1.6 ms, the rings are interacting at the outer edges instead of the centre point, which causes the little difference

between FEM and the present CPDI analysis as shown in Figure 4.

5. Conclusions

The penalty function method that is widely used in FEM is adopted in this paper to improve the interaction in MPM.

In the proposed scheme, the surface of a continuum is discretised separately from MPM so that the contact between

individual entities can be performed accurately. The coupling between the background computational discretisation

and the surface mesh is achieved by adding the contact forces as an external force to the momentum equation. Two
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numerical examples have shown that the proposed scheme is able to predict accurate and smooth contact forces.

Future work will investigate the use of a balanced master-slave algorithm instead of the classical approach being

adopted as well as to study the influence of the surface mesh refinement on the resolution of the contact forces. More-

over, an algorithm to damp out the high frequency oscillations related to a highly impact problems is required.
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