
   

    

  

  Improvement of the frictional contact algorithm 

with application of pile installation 

 

Shreyas Giridharan 

 

  

2016 – Masterthesis 274 

des Instituts für Geotechnik 

Herausgeber C. Moormann 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die Masterthesis wurde vom Kandidaten selbstständig, aber unter Anleitung des Be‐

treuers erstellt. Sie ist nicht in allen Teilen geprüft. 

 

Die Masterthesis  ist Eigentum des IGS und sie darf deswegen nur mit dem Einver‐

ständnis des IGS ausgeliehen und kopiert (auch auszugsweise) werden.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erklärung: 

 

Hiermit  erkläre  ich,  dass  ich  die  vorliegende  Arbeit  selbstständig  unter  der 

Anleitung  des  Betreuers  erarbeitet  und  dabei  nur  die  angegebenen  Quellen  und 

Hilfsmittel verwendet habe. 

 

Stuttgart, den 02.11.2016                   ___________________________________________ 

                                                                   Shreyas Giridharan, Matrikelnummer: 2997069 





Improvement of the frictional contact algorithm with application
of pile installation

Fakultät für Bau– und Umweltingenieurwissenschaften
Universität Stuttgart

Masterthesis

vorgelegt von

Shreyas Giridharan

aus Chennai, Indien

Institutsleitung: Univ.-Prof. Dr.-Ing. habil. Christian Moormann
Betreuer: Dr.-Ing. Fursan Hamad

Abgabe: 31. Oct 2016

Institut für Geotechnik der Universität Stuttgart

2016





Abstract

Since the advent of finite element method, simulating practical applications and improving
its accuracy has been of great interest in both the industry and academia. In recent years,
tremendous progress has been achieved in applying the finite element method to a wide
array of problems. Geomechanical simulation, owing to large deformations that happen
during the course of simulation, which the traditional FE method cannot simulate well,
needs more novel simulation methods. Additionally, the condition of non-penetration im-
posed by the FE method makes it difficult to simulate application like pile installation.

Material Point Method (MPM) has been developed combining the best features of both the
Lagrangian and Eulerian methods, where the continuum is represented by particles called
material points, which flow through the background computational mesh in a Eulerian fash-
ion. MPM has been further developed to reduce the variations in internal force when the
particles cross the cell boundary, to new versions like Generalised Interpolation Material
Point method (GIMP) and Convected Particle Domain Interpolation method (CPDI).

In the present work, advanced version of MPM, the CPDI algorithm is used to model
the behaviour of the bodies. An explicit Euler forward MPM scheme is used in the integra-
tion of this model. The boundary of the continuum is discretised separately from the MPM
discretisation, and is traced accurately during the advancement of solution. A penalty
function method, commonly used in Lagrangian analysis is used for evaluation of contact
forces developed on the boundary. These contact forces are mapped to the computational
mesh, where the momentum equation is solved, with the contact force as an external force.
A fully drained hypoplastic sand model including stiffness anisotropy is used to simulate
the behaviour of soil under dynamic loading. Finally, numerical simulation of pile driving
is presented as an application to evaluate the efficacy of the proposed algorithm.

Successful implementation of hypoplastic sand model provides a framework for implement-
ing an anisotropic visco-hypoplastic model of clay for more accurate simulation of soil
structure for future works. Further, the sand can be modelled to be fully saturated, closely
mimicking the real conditions of offshore pile installation. For future works, a rigid contact
formulation may be developed and implemented for the interface element instead of the
penalty contact formulation, eliminating the need for discretising the pile with material
points, which would lead to savings in computational time.
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Chapter 1

Introduction

1.1 Overview

Numerical simulation of physical processes have become an integral part in the field of
science and engineering. History of finite element method, the primary tool used even today
can be traced back to the 1940s when aircraft engineers were dealing with the invention of jet
engine and needed a framework to analyse the airframe structures at large loads associated
with high speeds. Without the benefit of modern computers, the engineers developed
matrix methods of force analysis known as flexibility method, in which the displacements
are known beforehand and unknowns are the forces. Finite element method, in its most
used form corresponds to the displacement method, in which the unknown quantities are
system displacements in response to applied force systems. During the following decades
of 1960s and 1970s, finite element method was extended to applications including plate
and shell bending, pressure vessels, general three-dimensional problems in elastic structural
analysis, fluid flow and heat transfer applications. Further extensions to the finite element
method to include the effects of large deflections and dynamic analysis also occurred around
the same period. For applications in geo-mechanical simulation, fluid-structure interaction
and in general, problems involving large deformations, the performance of FEM was not
satisfactory. A need to formulate a new method to effectively simulate large deformation
hence emerged.

As an improvement to the mesh-based method, meshless Lagrangian methods have been
developed in which the continuum is described by a set of points as opposed to a FE grid.
Each point represents a subregion of the deforming solid. Meshless methods circumvent
the problem of mesh distortion, but perform poorly with regard to accurate application of
boundary conditions and numerical integration. It might also not properly represent the
considered continuum. If the density of point sets reduces during the deformation, non-
physical gaps might occur within the discretised body, and numerical integration would
either become inaccurate or fail altogether in that region. A well know method belonging
to this class is Smoothed Particle Hydrodynamics (SPH).
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Chapter 1 Introduction

t Lagrangian description

t Eulerian description

t ALE description

Material Point

Node

Particle Motion

Mesh Motion

Figure 1.1: One-dimensional example of Lagrangian, Eulerian and ALE particle and mesh
motion[19]

In Eulerian methods, the region of space that the continuum is moving through is discretised
instead of the continuum itself being subdivided into finite elements. An example of such a
method being the Finite Volume Method. It is possible to assess at a certain point of time
the velocity change that the particle experiences when passing by a grid node, or the amount
of material that crosses the element boundary. It is however not possible to determine from
such computations the location of the particle, or the velocity it has at a certain time.
Lagrangian method, however, allows tracing of the state variable of a certain particle as
the discretisaton of the state variable and the continuum are tied together. Usually with
solids, the equilibrium conditions are formulated with respect to the material and not to
the region surrounding it. Lagrangian methods are therefore more suitable to applications
in geotechnical problems as opposed to Eulerian methods.

In Arbitrary Lagrangian-Eulerian (ALE) methods, equilibrium conditions are solved on
the basis of a deforming mesh. The displacements do not necessarily coincide with the
movement of the particles during the computation. If mesh distortion becomes too large,
nodes uncouple from the particles that they follow. Particles of the continuum along with
its state variables move relative to the nodes of the mesh corresponding to the Eulerian
method. Material Point Method (MPM) is one such implementation of the ALE method.

2



1.2 Scope of Work

MPMmakes use of not only FE mesh as the background computational grid, but also a cloud
of points, called material points which move through the computational grid which represent
the continuum. The movement of material points represents deformation of the continuum.
These material points carry the properties, state variables as well as the external loads.
The background computational grid is used to determine the incremental displacements
and strains. Information however, is not stored permanently in the computational grid.
The mesh can then be reset, moved or changed arbitrarily. The three approaches are
depicted in Figure 1.1. In this freedom with moving the computational node within the
ALE description allows arbitrarily large deformation and helps avoid mesh entanglement.

In this work, CPDI, an enhanced version of classical MPM algorithm is used along with
an improved contact algorithm involving penalty method, and has been used to simulate a
pile installation problem. The constitutive model for hypoplastic sand has been employed
to simulate the soil structure.

1.2 Scope of Work

Literature Study

A preliminary review on the existing numerical methods is made to understand the be-
haviour of each method under large deformation. This is carried out in order to understand
the importance and position of Material Point Method in simulating continuum which un-
dergo extreme deformation.

Development

1. A 2D finite element program with four gauss points is developed on the work of
Al-Kafaji [1].

2. The hypoplastic constitutive model for sand is validated using this finite element
program.

An extension of the finite element formulation to material point method (MPM) is studied
and the MPM code developed by Dr.-Ing. F. Hamad is used for the treatment of large
deformation problems

1. As opposed to the classical frictional contact method of MPM, a penalty contact
method is applied between interacting surfaces to improve the accuracy of contact.

2. A simulation of a pile penetrating a soil structure is then simulated and compared
with frictional MPM contact algorithm to highlight the differences.

3



Chapter 1 Introduction

Implementation

1. All the algorithms are implemented in programming language FORTRAN. The pro-
grams are compiled in Visual Studio using Intel Fortran Compiler.

2. Pre- and Post-Processing for the simulations carried out in the work is done in GiD
10.0.8.

Validation

The examples in this work have been validated using a commercial FE Tools - Plaxis 2D,
for the validation of hypoplastic sand model, and ABAQUS, for the validation of results
obtained from the MPM code, and also with other published literature.

1.3 Layout of the Thesis

The Thesis consists of 5 Chapters and it’s arrangement follows the sequential order in
which the work has been done. In addition, an Appendix is provided to understand the
fundamental concepts of continuum mechanics.

Chapter 2 provides a brief history into the development of Material Point Method and the
improvements that have been made to it. It provides the theoretical framework of CPDI,
a improved version of MPM on which the simulations have been carried out on. It also
provides an overview of the contact algorithm, the theoretical framework of the improved
contact algorithm involving penalty contact that is used in applications presented in the
subsequent chapters of the thesis.

Chapter 3 provides the theoretical framework of the hypoplastic sand model used in
the simulations. Subsequently, the model’s extension to small strain is also presented.
Verification of the model is described with relevant validating examples.

In Chapter 4, a simulation of a pile penetrating into the soil is presented. The parameters
of the sand model that has been used in the simulation as well as the boundary conditions
and applied external forces are presented in the section. Finally, the result of the simu-
lation is presented and is compared with results obtained from commercial FE package,
ABAQUS.

The Thesis concludes with Chapter 5 wherein the work is summarised and an outlook on
the possible further works is discussed.

In addition, Appendix A provides a brief overview of continuum mechanics and provides
an overview of notations used in this Thesis.

4



Chapter 2

Material Point Method - Overview

2.1 Introduction

For complex problems in continuum mechanics, it is not always possible to obtain a closed-
form solution. The restrictions arise due to its geometry, loads or boundary conditions.
It became essential to develop alternate procedures that yield an approximate solution.
Several numerical methods have been developed over the last decade, but none were as
popular and widely used as the finite element method. In computational mechanics, the
Finite Element Method (FEM) is a numerical technique that approximates the solution of
boundary value problem. Finite Element method has been successfully applied to a wide
range of problems in both solid and fluid mechanics with very good results. For three-
dimensional problems however, FE meshes can often be too complex and time consuming
to solve. Further, large deformation leads to mesh distortion and might require re-meshing.
These difficulties led to the development of alternate discretisation strategies which avoids
mesh distortion by discretising at point and by not maintaining a body-fixed mesh.

A number of meshless methods have been developed. The main differences between these
methods depends on facts whether or not a temporary mesh is included in the solution
procedure, whether discretisation procedure begins with the weak form or the differential
equation, and in the construction and support of the point weighting functions. One of the
methods that is developed is the Partition of Unity method. This method uses a variational
form to specialise the discrete approximation in regions of the problem domain using a stan-
dard Galerkin discretisation scheme. This is in contrast to the development from a varia-
tional form by using a Petrov–Galerkin discretisation scheme, for methods such as Adaptive
Characteristic Petrov–Galerkin Finite Element, and Meshless Local Petrov–Galerkin meth-
ods. Later, mesh-based particle method are developed, which consists of a pre-defined
background mesh and particles representing the continuum which move within this back-
ground mesh. A typical representation of a MPM discretisation is presented in Figure 2.1.

5
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Ω
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computational node

material point
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Figure 2.1: Representation of MPM discretisation

2.2 Mesh-free Methods

In meshless methods, the nodal connectivity is adjusted continuously as the continuum
deforms. This avoids the problem of mesh-distortion. The approximations in the meshless
method can be based on moving least-squares method, kernels or partition of unity methods.
The earliest implementation of meshless method is presented by Lucy [40], and is called
Smoothed Particle Hydrodynamics (SPH). SPH is a particle method in which the closed
form of the partial differential equation is approximated using collocation methods. SPH
method does not require a pre-defined mesh to calculate the spatial derivatives, a clear
distinction from the material point method.

Another relatively younger mesh-free method is the Element-free Galerkin Method (EFG)
[9]. In this method, the trial functions for the weak form are constructed using the moving
least-squares interpolation. Oñate et al. [51] has presented the Particle Finite Element
Method (PFEM) in which the nodal points represent the particles and computational mesh
is constructed by connecting these points. The mesh is then used to solve the governing
equations in a Lagrangian fashion.

Meshless methods are suited to problems involving large deformation, but still require
considerable improvement in computational efficiency. It is shown that the computational
cost of (EFG) method is much higher than that of conventional FEM. A few other mesh-free
methods that are popular include Extended Finite Element Method (XFEM) and Smoothed
Finite Element Method (SFEM).

6



2.3 Mesh-based Particle Methods

2.3 Mesh-based Particle Methods

In mesh-based particle methods, certain features of both the meshless and the mesh-based
methods are exploited to simulate large deformation problems effectively, which otherwise
would be impossible in either of the methods separately. Unlike the mesh-free methods
where there is a strict absence of background mesh, in mesh-based particle methods, there
is a pre-defined background computational mesh where the material points represent the
continuum and move within the background mesh as it deforms.

2.3.1 Particle-in-cell Method

The first Particle-In-Cell (PIC) simulations have been carried out in the late 1950s by
Buneman [14] and Dawson [18] where the motion and interaction of upto 1000 particles
have been simulated. Although the original objective was to simulate problems in two- and
three- dimensions, the early developments of PIC has been limited to one-dimension [24].

With time, limitations of PIC became evident. It was noisy, has more numerical viscosity
[12] and suffers from energy dissipation [1]. The reason for this dissipation is attributed
to the fact that Harlow’s original formulation was partially Lagrangian, in the sense that
only mass and position were assigned to each particle. Other physical properties such as
velocity, momentum and energy are temporarily mapped to the particles in order to convect
information between cells at the end of each time step. The properties assigned to particles
are weighted by the mass of each particle. If a particle moves from one cell to another, the
energy and momentum associated with it are subtracted from the old cell and added to the
new cell. They are not stored permanently within the particle, which makes it more of an
Eulerian method. In spite of such drawbacks, PIC was successful in simulating problems
involving large distortion [25]. Nishiguchi and Yabe [50] develops a more accurate scheme
for the convection between particles and grid points. Although they use the partially La-
grangian representation of particles as in the original PIC, they improved the accuracy
of momentum advection and energy to a second order accuracy in space. Considerable
improvements have been later made to modify the partially Lagrangian representation of
particles to a fully Lagrangian representation in which the physical quantities such as mo-
mentum and energy are assigned to the particles. The grid is then used to solve for the
solution of governing equations. As a consequence of using a fully Lagrangian approach,
reduced numerical diffusion is achieved. This improvement, however, meant that additional
storage is required compared to the partially Lagrangian formulation.

7
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2.3.2 Fluid-implicit particle method

Brackbill and Ruppel [13] uses the fully Lagrangian PIC as a basis to extend the applica-
bility of the method by using adaptively zoned mesh. It is then developed to a method
called Fluid-Implicit Particle method (FLIP), which is a PIC formulation in which the
particles carry the physical properties like mass, momentum and constitutive properties of
the continuum. As a direct consequence of using an adaptive mesh, simulation of complex
geometries with better accuracy is achieved. Furthermore, the computational cycle of PIC
to Lagrangian and Eulerian phase is clearly separated. This separation allows the use of
existing finite difference algorithms to solve the discrete equations in the Lagrangian phase,
as particles do not play a permanent role in this phase.

FLIP is extended to problems involving Fluid-Structure interactions by Sulsky and Brackbill
[63]. This method is naturally capable of handling non-slip contact between different bodies
without any special algorithm [64]. This is due to the fact in PIC, particle velocities are
single valued in mapping and re-mapping between grid points and the particles.

Burgess et al. [15] demonstrates that mapping of velocities from particles to nodes can be
made conservative on the basis of mass-weighted least square procedure. This procedure
requires inversion of mass-matrix to compute velocities from momentum. It has been al-
ready shown that conservation of kinetic energy is fully achieved if consistent mass-matrix
is used, inversion of the matrix however, is computationally expensive. Alternatively, a
lumped-mass matrix is used where the diagonal entries correspond to the row sum of the
consistent-mass matrix. Although using a lumped-mass matrix has both computational
and storage advantages, it introduces numerical dissipation in the kinetic energy.

2.3.3 Coupled Eulerian Lagrangian Method

In order to validate the results obtained from the MPM code, a commercial FE package
ABAQUS is used. In order to simulate the pile installation in ABAQUS, a problem with
large deformations, the Coupled Eulerian-Lagrangian (CEL) method is employed. With
this method, the drawback of the FE method, which originates from its reliance on a La-
grangian mesh is overcome. The CEL method is based on coupling between the Lagrangian
body, which most commonly is the solid material, and the Eulerian body for the fluid be-
haviour material. Explicit coupling is obtained by applying pressure boundary condition
on the Lagrangian body whereas velocity boundary condition is prescribed on the Eule-
rian discretisation of the fluid, as demonstrated in Figure 2.2. This method is chosen for
ABAQUS simulation as its applicability in geomechanical applications has been proven for
Lagrangian object being pushed into an Eulerian soil [46, 53].

8
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Eulerian Discretisation

velocity

Eulerian Phase

Lagrangian Discretisation

Lagrangian Phase

pressure

Figure 2.2: Explicit coupling in Coupled Eulerian-Lagrangian (CEL) Method

2.4 Material Point Method

Material point method (MPM) is a sophisticated technique suitable for simulating large
deformation. In MPM, continuum is represented by Lagrangian points, known as Material
Points. Large deformations are modelled by particles moving through the fixed Eulerian
mesh. In this formulation, the particles carry all the physical properties of the continuum
like momentum, mass, material parameters, stresses, strains and external loads. The fixed
Eulerian mesh and its Gauss points do not carry any permanent information during the
solution. At the beginning of each solution step, information is mapped from the particles
to computational grid. Incremental solution is determined in the grid in a Lagrangian
fashion. At the end of solution step, the information is mapped back to the particles. A
representation of a MPM computational step is presented in Figure 2.3.

2.4.1 History of development of MPM

FLIP method is extended for use in solid-mechanics by Sulsky et al. [64]. The weak for-
mulation of the discrete equations is formulated such that they are consistent with the
traditional finite element method. Furthermore, constitutive equations are applied to each
particle, thereby avoiding interpolation of history dependent variables. Each particle is
tracked separately during the computation process. Due to MPM’s formulation of applying
constitutive equation separately to each particle, continuum with different material param-
eters or constitutive equations are automatically treated, which is a clear advantage over
Eulerian FEM. Numerical examples with large rigid-body rotations show that the energy
dissipation which tends to occur in Eulerian approach does not occur in the proposed ap-
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initial position incremental deformation
deformation of particles
reset of mesh

end of time step

Figure 2.3: Computational step in MPM

proach. This method is implemented in impact of objects in plane-strain configuration
with elastic and strain-hardening plastic material behaviour [59]. To incorporate constitu-
tive laws expressed in terms of Jaumann stress rate, PIC is extended in the work of Sulsky
and Schreyer [60]. An axi-symmetric formulation of PIC is formulated and named as Ma-
terial Point Method (MPM) where examples of elastic vibration of sphere and taylor-bar
impact is presented [61].

Więckowski et al. [67] applies MPM to simulate flow of granular material during the pro-
cess of discharging a silo. The phenomenon of friction is taken into account and frictional
contact algorithm and solution procedure for contact problems is presented in the frame-
work of MPM. A framework for calculating the critical time step is suggested and derived
from stability criterion. It is observed that among the mesh size and the wave speed, the
critical time step is significantly affected by the number and position of particles in the
elements. It is also observed that in general, MPM demands a smaller time step size than
FEM. Bardenhagen and Brackbill [4] investigates stress localisation in granular materials
and discusses its application to plastic-bonded explosives. Observations for quasi-static and
dynamic loading is also discussed. Coetzee [16] discusses the application of MPM to model
the flow of granular material in front of flat bulldozer blades and into dragline type buck-
ets. The formulation is based on Cosserat continuum, and MPM results is compared with
experimental measurements, along with results obtained from discrete element method.

Guilkey et al. [21] formulates a quasi-static MPM approach to simulate slow rate of loading.
The formulation is applied to the modelling of multicellular constructs. An implicit integra-
tion scheme is used to integrate the equilibrium equation. As opposed to traditional MPM,
resetting of mesh after each time step is avoided. The reason is to mitigate error associ-
ated with particle crossing between elements, which is know to cause errors in quasi-static
analysis due to absence of inertia forces.

Bardenhagen and Kober [5] generalises the MPM solution procedure with a smoother spline
interpolation function with a larger influence region and a continuous first order gradient
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called Generalised Interpolation Material Point method GIMP. The main motivation be-
hind the development of GIMP is to eliminate the numerical noise associated with MPM
when particles cross element boundary. Also, when the boundaries of particle domains
become misaligned with the grids under rotation, the computation of interpolation func-
tions becomes very complex. To avoid this problem, Sadeghirad et al. [55] proposes a new
method, Convected Particle Domain Interpolation method (CPDI) using alternate grid ba-
sis functions. Instead of considering rectangular particle domains, they are considered as
parallelograms.

2.4.2 Implicit integration in MPM

In dynamic MPM, solution is usually advanced using explicit time integration scheme.
However, in quasi-static problems, where the flow of material is slower than the wave
speed propagating through the material, computations is time consuming. Employing an
implicit integration scheme reduces computation time considerably. Cummins and Brackbill
[17] proposes an implicit formulation and applies it to quasi-static simulation of granular
materials. An inexact, matrix-free, Newton-Krylov technique is used to solve the fully
implicit, non-linear equations of motion for granular flows with inter-granular contact. This
technique is adopted to reduce computation time by eliminating the construction of tangent
stiffness matrix. A similar approach with different time discretisation is implemented by
Sulsky and Kaul [58]. It is shown that implicit solver generates solution whose accuracy
is compromised in problems where the time step size is large, as there is some energy
dissipation when applied to problems of high frequency content. In the work of Love and
Sulsky [39], it is shown that an implicit formulation of MPM is unconditionally stable. By
constructing a consistent mass matrix together with the implicit scheme, the algorithm’s
complexity is significantly increased. In addition to implicit algorithm of dynamic MPM,
there also exists quasi-static formulation with implicit solvers [11].

2.5 Numerical Formulations of Dynamic Material
Point Method

Similar to formulation in FEM [32], numerical formulation in MPM begins from the weak
form of momentum balance equation. Momentum balance equation describes the equation
of motion of a body [32] and is given by

ρ v̇ = div(σ) + ρ g , (2.1)

where, ρ is the density, g is the gravitational field, u is the displacement field, v is the
velocity field, and σ is the Cauchy stress. Rewriting Equation 2.1 in indices notation, we
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get
ρ
dvi
dt

= ∂σij
∂xj

+ ρ gi . (2.2)

The equations presented is referred to as the strong form. A weak form is derived to be used
in the discretised form. This is done by multiplying the strong form with a test function, δu
and integrating over the entire domain, Ω. The weak form of Equation 2.2 is represented
as ∫

Ω
δui ρ

dvi
dt

dΩ =
∫
Ω
δui

∂σij
∂xj

dΩ +
∫
Ω
δui ρ gi dΩ , (2.3)

with,
δui = 0 on dΩ . (2.4)

By applying integration-by-parts rule on the first part of Equation 2.3, and substituting it
back, we get∫

Ω
δui ρ

dvi
dt

dΩ =
∫
Ω

∂

∂xj
(δuiσij) dΩ −

∫
Ω

∂(δui)
∂xj

σij dΩ +
∫
Ω
δui ρ gi dΩ . (2.5)

By applying Gauss’s theorem to the first term of Equation 2.5, we get∫
Ω

∂

∂xj
(δui σij) dΩ =

∫
Γ
δui σij nj dΓ , (2.6)

with, Γ the boundary of the domain Ω. Substituting Equation 2.6 in Equation 2.5 yields
the weak form of the momentum balance equation∫

Ω
δvi ρ

dui
dt

dΩ =
∫
Ω
δui ρ gi dΩ −

∫
Ω

∂(δui)
∂xj

σij dΩ +
∫
Γ
δui ti dΓ , (2.7)

where, traction ti = σij nj is obtained using Cauchy’s lemma.

The values of a variable inside an element is based on the nodal values and the corresponding
shape function denoted by Ni. In MPM, a body is represented by a group of particles. An
additional step is required to interpolate the fields to and from the particles. Integrals here
are approximated as a sum over the particles and represented as∫

Ω
ρ(∗) dΩ ≈

∑
p

∫
Vp
ρ(∗) dVp ≈

∑
p

∫
p
(∗) mp ≈

∑
p

(∗) mp , (2.8)

where, mp is the mass associated with the material point p, and Vp is the particle volume.
Using these definitions, the discretised momentum equation takes the form

M ä = F ext − F int , (2.9)

where, M is the consistent mass matrix, ä the acceleration vector, and F ext and F int are
external and internal force vectors, respectively. Using a lumped-mass matrix significantly
simplifies calculation due to its diagonal nature, despite introducing a slight amount of
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numerical dissipation, it is preferred over consistent mass matrix. In the element level, it
is represented as

mi =
np∑
p=1

mp Ni(xp) , (2.10)

where, np is the number of material point, and xp indicates the location where shape
function Ni is evaluated. Referring to Equation 2.9, the external force vector is given by

F ext =
np∑
p=1

mp N
T (xp) g +

∫
Γ
NT t dΓ , (2.11)

and, the internal force vector is given by

F int =
np∑
p=1

Vp B
T (xp) σp , (2.12)

where, B = LN with L being the linear differential operator, and σp is a vector containing
the stress components at material point p.

The equations presented above describe the procedure for solving the unknown quantities
at the computational node. Care must be taken when including forces with surface traction.
One of the approach followed to accommodate tractions is to assign the corresponding forces
to the nearest material point [1]. After computing the forces and building the mass-matrix,
the particle’s state and its position is updated at the end of computational time step by
resetting the computational mesh.

2.5.1 Time Integration

Given a diagonal mass-matrix, integration of the system of equation over time becomes
trivial. Acceleration vector is given by

än = [Mn
l ]−1

(
F ext − F int

)n
, (2.13)

where a forward-Euler time integration scheme is used to update the nodal velocity from
the nodal accelerations. In practice, however, a modified algorithm proposed by Sulsky
et al. [62] is used. The nodal velocities of the particle is updated using the equation

ȧn+1
p = ȧnp +

ndof∑
i=1

∆t Ni(xp) äni , (2.14)

where, ndof represents the number of grid degrees of freedom, ȧnp and ȧn+1
p are the velocities

of particle p at the beginning and end of time step ∆t, respectively. Nodal velocities are
then mapped from the particles to the nodes, being aware of the restriction that momentum
must be conserved. It is given by

Mn
l ȧ

n+1 =
np∑
p=1

mp N
T (xp) ȧn+1

p , (2.15)
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where, ȧn+1 is the updated nodal velocity. It is then used to obtain incremental nodal
displacement via the relation

∆a = ∆t ȧn+1 . (2.16)

Position of the particle is updated via the relation

xpn+ 1 = xnp +N (xp) ∆a , (2.17)

where, xnp and xn+1
p are positions of particle at time tn and tn+1, respectively. Since the

position of particle is updated using a single-valued continuous velocity field, interpene-
tration of particles is avoided. This also allows an automatic no-slip contact between the
bodies without the need for a separate contact algorithm. After obtaining the updated
nodal velocities, strain increment ∆εp of material point p is calculated using the relation

εp = B(xp) ∆ae , (2.18)

where, ∆ae is vector of incremental nodal displacements of element e to which the material
point belongs. Given the strain increment, stress increment ∆σp is updated at each material
point using the constitutive law unique to that material point. Total stresses are updated
via the relation

σn+1
p = σnp + ∆σp , (2.19)

where, σnp and σn+1
p are global stresses at time tn and tn+1, respectively.

2.5.2 Numerical formulation of CPDI

Sadeghirad et al. [55] proposes the Convected Particle Domain Interpolation method (CPDI)
by using alternative grid basis functions. Instead of rectangular grid basis functions, the
particles are considered as parallelograms and thus large deformations of a single phase
material can be well simulated. CPDI permits the initial particle domain to be a parallelo-
gram and at the end of the time step, the parallelogram is updated using the deformation
gradient F n

p . Since early MPM versions assumed a collocated distribution for the material
properties across the particle domains, it causes numerical instability when particles crosses
element boundaries, termed as cell-crossing error. Updating the particle domain in CPDI
reduces the cell-crossing error as well as the extension instability, when the influence of
supporting domains no longer overlap with other particles. Linking the influence of parti-
cles with its deformations can cause numerical difficulties in the integration of constitutive
equation when the particle is heavily distorted. To address this problem, Homel et al. [29]
introduces a geometrical resizing procedure to limit the particle domain size within a fixed
circle, whereas the deformation gradients contributing to the material model are kept intact.
Numerical freezing of a particle influence is applied to accommodate the material separa-
tion and improve the accuracy of CPDI near the centre line of an axi-symmetric problem
[45]. Sadeghirad et al. [56] extends the CPDI formulation where the level of interpolation
is extended and the particles evolve to quadrilaterals from parallelograms and is termed as
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MPM

p p p p p

cpGIMPuGIMP CPDI1 CPDI2

r1

r2 r2 r1

Figure 2.4: Evolution of domains to represent the material point in MPM[22]

CPDI2. CPDI method has been implemented in this work and further formulations would
only deal with CPDI. The enhancement of particle domains is represented in Figure 2.4.

Recalling the discretised momentum balance equation associated with node i

Miai = F ext − F int , (2.20)

where, ai is the nodal acceleration vector associated with node i. The lumped mass Mi,
and the nodal force vectors are represented as

Mi =
∑
p

φip mp , (2.21)

F ext =
∑
p

φip g mp +
∫
Γp
τ φi(x) dΓ , (2.22)

F int =
∑
p

∇φip σp Vp , (2.23)

where, φip is a mapping function and the subscript denotes the coupling between grid
quantities i and particle-based quantities p. mp, Vp and σp are the mass, volume and stress
tensor corresponding to the particle p, respectively. In CPDI, the alternative basis functions
are constructed to be an interpolation of standard basis functions at the four corners of each
particle domains [55] and represented as

φip ∼=
1
4 [Si(xp1) + Si(xp2) + Si(xp3) + Si(xp4)] , (2.24)

where, Si(xpj) is the grid basis function of the corner j ∈ [1, 2, 3, 4] of the parallelogram
domain of the particle p. The gradient of interpolation function is obtained accordingly
as

∇φip = 1
2Vp

{
[Si(xp1)− Si(xp2)]

[
rn1z − rn2z
rn2x − rn1x

]
+ [Si(xp2)− Si(xp4)]

[
rn1z + rn2z
−rn1x − rn2x

]}
, (2.25)

where, r1 and r2 are the vectors defining the parallelogram domain, as shown in Figure 2.4.
These vectors are updated according to the relation

rn+1
1 = F n+1

p · r0
1 , (2.26)
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rn+1
2 = F n+1

p · r0
2 , (2.27)

where, F denotes the deformation gradient of material point p, and the superscripts 0 and
n+ 1 denote the initial and updated vectors, respectively. Deformation gradient is updated
continuously through the relation

F n+1
p =

(
I +∇vn+1

p ∆t
)
F n
p , (2.28)

where, I is the second-order identity tensor, and ∆t is the time step increment. The velocity
gradient is obtained by interpolation of the nodal velocities and is given by the relation

∇vn+1
p =

∑
p

∇φip vn+1
i . (2.29)

The gradient ∇φip is evaluated using the relation

∇φip = 1
Vp

∫
Ω
∇φidV , (2.30)

and the nodal velocity vn+1
i , at the end of the time step is obtained using the procedure

proposed by Sulsky et al. [62]. This is represented as

vn+1
i =

∑
p φipmpvp
mi

+ ai∆t , (2.31)

where, ai is obtained from Equation 2.13. The particle velocity is updated through direct
mapping of the grid information and the position of material points is advanced using the
nodal velocity achieved by applying principle of momentum conservation according to the
least squares concept. The updates are expressed as

vn+1
p = vnp +

∑
i

φip ai dt , (2.32)

xn+1
p = xnp +

∑
i

φip vi dt . (2.33)
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2.6 Contact Formulation in MPM

This section presents a brief history of modelling contact in MPM and the numerical for-
mulation of penalty function method implemented in the contact algorithm.

2.6.1 History of contact formulations in MPM

Modelling frictional contact is a widely encountered problem in simulation science and has
been effectively simulated by MPM. As MPM uses a single-valued mapping function between
background grid nodes and particles, interpenetration of particles is avoided in standard
MPM formulation. A no-slip contact constraint is also inherent in standard MPM. In the
work of Sulsky et al. [62], where a steel sphere impacts an aluminium target, it is shown
that due to inherent no-slip condition, a greater penetration resistance is developed. A
simple contact algorithm is proposed by York [70] to allow the release of no-slip constraint
in standard MPM. York [70] proposes that if the bodies come into contact with each other,
standard MPM method is used to impose the impenetrability condition, and if the bodies
move away from each other, they move in their own velocity fields to allow separation. Bar-
denhagen et al. [7] introduces the early contact algorithm to relax the interaction between
objects, and also proposes a contact/friction/separation algorithm in multi-velocity fields.
The impenetrability condition and the Coulomb friction are incorporated into the MPM
algorithm when contact occurs. This approach is demonstrated using the sphere rolling
on the inclined plane and the granular shear simulation [8]. Xiao-Fei et al. [69] proposes
a three-dimensional multi-mesh contact algorithm, in which the contact force between the
bodies is obtained from the normal nodal acceleration continuity requirement at the contact
surface. This approach is used to simulate impact of Taylor bar and that of elastic and
plastic spheres.

In the approaches described until now, contact is detected when material points of different
bodies contribute to the same grid node of the background computational mesh. This leads
to interaction being activated before the contact actually taking place. Furthermore, lack
of smoothening function in detection procedure causes oscillation in contact stresses. Ma
et al. [41] presents a new contact algorithm in MPM, named Geo-contact developed espe-
cially for geotechnical simulation, with a penalty contact function and a limited maximum
shear stress. The penalty function improves the accuracy of the computation via reducing
numerical oscillation in the quantitative contact forces by avoiding impact of the contacting
materials. The limited maximum shear stress along the interface facilitates the simulation
of different contact conditions in terms of geotechnical engineering. In order to avoid the
non-physical behaviour that corresponds to the velocity field algorithm [6], an approach
based on the combination of multi-mesh is suggested by Hu and Chen [30]. Simulation of
contact between the teeth of Spur gears is simulated and also has been applied for numerous
other applications [42].
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Although MPM is more accurate and robust for problems involving severe distortion than
FEM, it is less efficient that FEM for problems involving small deformation. This is because
MPM demands more computational cost and storage as it saves both grid and particle data.
It is therefore desirable to couple MPM and FEM to take advantage of both methods. For
advanced versions of MPM like GIMP and CPDI, where the spatial size is assigned to the
material points, the opening between bodies in contact become more pronounced [5, 55, 56].
This also leads to the requirement of a more precise definition of the contact surface, which
can be ensured using a finite element formulation.

Attaway et al. [3] demonstrates the coupling between SPH and FEM through a master-
slave algorithm, where the contact forces is imposed on the master surface and the slave
particles to avoid penetration. Johnson and Stryk [31] extends the coupled particle method
by converting damaged or failure elements into particles. In the work of Zhang et al. [71],
the material domain is discretised by a mesh of finite elements, and a computational grid
is predefined in the potential large deformation zone. The nodes covered by the grid are
treated as MPM particles, and the remaining nodes are treated as FE nodes.In the coupled
finite element-material point method [35], the FEM and MPM body are coupled using the
local multi-mesh contact method. In the adaptive finite element-material point method
[36], all bodies are initially discretised as finite elements, the distorted/failed elements are
automatically converted to particles during the simulation. The converted particles are
coupled with the remaining FEM nodes using the local multi-grid contact method.

2.6.2 Frictional contact algorithm

In the basic MPM formulation, a non-slip condition is automatically imposed between
the objects coming into contact to prevent interpenetration. This condition adds extra
resistance when the bodies are coming into contact. Furthermore, if the bodies move away
after contact, due to the non-slip condition imposed, MPM algorithm glues the bodies
together. This fact is illustrated in the work of Sulsky et al. [62] where an elastic sphere
impacts an elastic-perfectly plastic material. The non-physical gluing of objects exists when
they share a computational node. Refining the mesh neither solves the problem, nor does it
smoothen it. An additional contact algorithm is therefore required to alleviate this problem.

As an improvement York [70] introduces a criterion to check whether the bodies are ap-
proaching each other, or are they moving apart. If the bodies are moving towards one
another, the standard MPM method is used. The material points are moved in the usual
’centre-of-mass’ velocity field which enforces the no-penetration condition. If the bodies
are moving away from one another, they are allowed to move in their own velocity field,
which allows separation to occur. As an advancement to the simple separation algorithm,
Bardenhagen et al. [7] proposes an algorithm which allows sliding and rolling with friction.
The traction due to momentum is added as an external force while solving the discretised
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Figure 2.5: Correction procedure in frictional contact algorithm[22]

momentum equation, Equation 2.9. The solution of this equation is performed separately
for each body in contact. An extra solution for the combination of the bodies is required.
The equation of motion is thus solved as many times as the number of bodies in contact
plus one. The MPM procedure is applied only when the following inequality is satisfied

(ṽn+1,A
i − ṽn+1,(A+B)

i ) · nn,Ai > 0, (2.34)

where, nn,Ai is the outward unit normal of body A at node i at the beginning of the time
step. ṽn+1,A

i and ṽn+1,(A+B)
i are the velocities of body A and the combination of bodies A

and B, respectively. The visual illustration of the relation is presented in Figure 2.5. If a
difference in velocities between the individual entities and the combination of the entities
is detected, the interpenetration of bodies is deterred applying the correction described by
the relation

˜̃vn+1,A
i · nn,Ai = ṽ

n+1,(A+B)
i · nn,Ai , (2.35)

with ˜̃vn+1,A
i being the modified velocity of the body A that is adjusted according to the

normal component of the system solution. Equation 2.35 is rewritten involving Equation
2.34 in the form

˜̃vn+1,A
i = ṽn+1,A

i −
[(
ṽn+1,A
i − ṽn+1,(A+B)

i

)
· nn,Ai

]
nn,Ai , (2.36)

where the correction term is understood as an external force applied at the interface node
such that

fn+1,A
i,norm = −m

n,A
i

∆t
[(
ṽn+1,A
i − ṽn+1,(A+B)

i

)
· nn,Ai

]
nn,Ai , (2.37)
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in which, fn+1,A
i,norm is the force applied at the body A in the direction normal to node i, andmA

i

is the corresponding mass of node i obtained for body A. Until now, the interpenetration of
objects is prevented. The frictional traction is applied next. Assuming that the two bodies
are sticking to each other, the force required for keeping them together is obtained from
the tangential component of the relative velocity represented as

fn+1,A
i,stick = −m

n,A
i

∆t n
n,A
i ×

[(
ṽn+1,A
i − ṽn+1,(A+B)

i

)
× nn,Ai

]
, (2.38)

where, fn+1,A
i,stick is the tangential force required to hold the bodies glued together. To model

frictional sliding, a limit for tangential forces following the formulation of Coulombs’s fric-
tion law is defined. The tangential forces is represented by

fAi,tang =
fAi,stick
‖fAi,stick‖

min
(
µ‖fAi,norm‖, ‖fAi,stick‖

)
, (2.39)

where, fAi,tang is the tangential component of the frictional contact force, and µ is the
coefficient of friction. The forces considered in Equation 2.39 are obtained at the end of the
time step.

2.6.3 State of the Art

In this thesis, the penalty function method, that is often used in FE formulations is im-
plemented in CPDI, where the contact forces in the normal direction is assumed to be
proportional to the residual of the impenetrability constraints and the surface stiffness.
The surface of the continuum is discretised separately from the volume discretisation. By
setting a certain amount of mass to the surface, the surface nodes are able to follow the
deformation of the continuum. Upon the equation of motion, the surface nodes of individual
entities might interact according to the penalty function. Frictional forces are then traced
back as an external contact force acting on the boundary.
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Figure 2.6: Penalty contact conditions

2.6.4 Penalty function method

Contact problems are formulated as a constrained optimisation problem. Numerical treat-
ment of contact constraints are carried out by a variety of methods like sequential quadratic
programming method, active set strategies and mathematical programming method. Solv-
ing a constrained optimisation problem is not trivial because of the requirement to build test
functions that satisfy zero-displacement boundary conditions. Since the contact boundaries
are not known before the problem is solved, it is not trivial to build the test functions either.
It is therefore converted to an unconstrained optimisation problem by using the Lagrange
multiplier method or the Penalty method. Although penalty method provides approximate
solutions, it is widely used for its simplicity to satisfy the kinematic constraints in the weak
sense. In this method, if a region Γc where contact violation exists on a body as shown
in Figure 2.6, the potential energy is penalised proportional to the amount of constraint
violation by using a penalty function P , and is expressed as

P = 1
2ωn

∫
Γc
g2
n dΓc + 1

2ωt
∫
Γc
g2
t dΓc , (2.40)

where, ω is the penalty parameter, g is the gap function and the subscripts n and t refer
to the normal and tangential directions, respectively. By adding Equation 2.40 to the total
potential energy, the constrained minimisation problem is converted to an unconstrained
minimisation problem. The contact variational form is obtained from Equation 2.40, which
yields

δP (u, δu) = ωn

∫
Γc
gn δgn dΓc + ωt

∫
Γc
gt δgt dΓc , (2.41)

where, u is the displacement vector and the symbol δ denotes the variation of a quantity.
The gap functions g are defined as

gn = (xs − xs̄) eTn and gt = ‖t0‖
(
ξs̄ − ξ0

s̄

)
, (2.42)

where, xs is the position vector of the slave node s, s̄ is the projection of s on the master
segment, en is the unit vector in the normal direction, t being the tangential vector and
the superscript 0 denotes the values at the previous time step. The natural coordinate ξ is
defined as

ξ = 1
‖t‖

(xs − x1)T et and 0 ≤ ξ ≤ 1 , (2.43)
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where, x1 is the position vector of one of the master segments’s ends and et is the unit vector
in the tangential direction. Taking the variation of Equation 2.42 and back substituting
the results to Equation 2.41 gives

δP (u, δu) = ωn

∫
Γc
gn e

T
n (δus − δus̄) dΓc

+ ωt

∫
Γc
gt ‖t0‖

(
‖t‖ eTt (δus − δus̄) + gn e

T
n δus̄,ξ

‖t‖2 − gn eTn xs̄,ξξ

)
dΓc .

(2.44)

Equation 2.44 is discretised to the form

δP (u, δu) ≈
ns∑
i=1

δûT (ωn gnCn + ωt gtCt)i , (2.45)

where û is the nodal displacement and ns is the number of slave nodes that penetrate into
the master segments. Cn and Ct in Equation 2.45 read as [33, 52]

Cn = N − gn
l
Q, and Ct = T + gn

l
P , (2.46)

with

u =

usu1
u2

 N =

 en
−(1− ξ) en
−ξ en

 T =

 et
−(1− ξ) et
−ξ et

 P =

 0
−en
en

 Q =

 0
−et
et

 ,
(2.47)

where u1 and u2 are the displacement of the two ends of the master element, which has
the length l. The final frictional force on the master and slave nodes are written as

F inter =
ns∑
i=1

(ωn gnCn + ωt gtCt) , (2.48)

in which F inter is the assembly of interaction forces.

2.6.5 Contact Algorithm

Formulation of the improved contact algorithm is accomplished by reformulating the penalty
function method in the framework of CPDI. For this purpose, an interface surface is defined
along which the penalty function method is applied. The problems simulated are considered
as two-dimensional. The surface is discretised using two-node linear segments. Thickness is
also assigned to the segments so that mass is also allocated to the interface nodes according
to the density of the continuum. In all cases, a thickness of less that 1% of the entity
thickness is assumed. In addition to thickness, the normal and the tangential stiffness must
also be specified. This can be same as the value of elastic stiffness to which the nodes are
attached. Exceeding the maximum stiffness of the system will influence the stability of the
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procedure. On the other hand, if a very low value of normal stiffness is assigned, pene-
tration between entities during the solution procedure is likely. The coordinates, material
properties, position, velocity and forces of the surface nodes and the material points are
stored in separate databases. These are then tracked during the solution process for each
node. In case the potential contact region is known before the simulation, a surface mesh
can be assigned to only that region in order to reduce the computational effort. During the
computation process, interface nodes follow the MPM algorithm and their location is up-
dated using the velocity field obtained from the computational grid as elaborated in Section
2.5. After updating the locations, a detection for overlap of the surface nodes of different
entities is then performed.

2.6.6 Definition of contact pair

When two bodies are in contact, the concept of master-slave distinguishes the bodies.
Although there is no theoretical reason to distinguish one body from another, the distinction
is made of numerical convenience. One body is defined as the master, while the other, the
slave. Contact conditions are then imposed taking into consideration that the slave body
cannot penetrate the master body. This implies that hypothetically, the master body can
penetrate the slave body. This is not physically possible, but numerically possible because
it is not checked. When a curved boundary with a fine mesh is selected as the master body,
a straight slave boundary with a coarser mesh shows a significant amount of penetration,
even if none of the slave nodes penetrate into the master body. It is important to make
the definition of master-slave bodies in order to minimise the numerical error. In general,
a flat and stiff body is selected as the master body, and curved/concave and softer body is
selected as the slave. In addition, the body with a coarser mesh is selected as the master
and the body with a finer mesh is selected as the slave.

2.6.7 Detection of Contact Pair

In classical MPM, the contact algorithm for multi-velocity fields that allows separation,
rolling and sliding with Coulomb criterion is usually adopted [7, 23]. Contact between
two bodies, A and B at a computational node i is activated if the following inequality is
satisfied (

vAi − vA+B
i

)
· nAi > 0 , (2.49)

where, ni denotes the outward unit normal at i. The superscripts A refers to the velocity
when body A is considered by itself and A + B corresponds to the velocity when bodies
A and B are combined simultaneously. In addition to Equation 2.49, the surface traction
t = σ · n in the vicinity of i is required to be in compression. Using the condition in
inequality 2.49 along with the CPDI concept, the two bodies interact if they contribute to
the same computational node, implying a bigger gap between the interacting bodies than

23
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that for the original MPM. Zheng et al. [72] suggests an additional criterion based on the
updated particle domain (

xAj − xBk
)
· nBk ≤ 0 , (2.50)

where, xAj is the position of thee corner j corresponding to body A and nBk is the unit
normal associated with the corner k of body B. Although Equation 2.50 is a refinement
over the previous method, the iterative method required for detecting these particles is
computationally expensive. Furthermore, implementing the above Equation results in nu-
merical difficulties for the case of heavy-impact problems like pile-penetration and requires
modifying the equation using geometric algebra, adding a new layer of complexity. A new
method is therefore suggested for contact detection.

Detection of contact pairs is done in three steps. In the first step, it is checked whether the
momenta of different interface discretisation contribute to the same computational node.
Elements attached to this node are then tagged as a zone containing surface nodes that
potentially might be in contact. Subsequent iterations will be carried out for the surface
nodes that are located inside the tagged elements, which is usually much smaller than
the total number of surface nodes. In the second step, the algorithm checks whether the
distance between a node of an entity and another node of a different entity is smaller than
the minimum search size. This minimum search size is usually the computational grid
spacing, as for the explicit procedure being adopted, the propagating wave is restricted
by the grid size during the time step. The final step of the algorithm is to identify node-
segment pairs in the sub-group that is identified in the second step that satisfy the following
condition

gn < 0 and 0 ≤ ξ ≤ 1 , (2.51)
where, the first condition checks whether the slave node has penetrated into the master
segment and the second condition checks whether the slave node is within the space of the
master element.

2.6.8 Calculation of contact forces

If a pair of master segment and slave node that are in contact is established from the
search algorithm, the resisting force to oppose the penetration is calculated from Equation
2.48. Although a predictor-corrector procedure can be performed to improve the accuracy
of nodal contact force, it can be avoided in explicit time stepping as the error in force
estimation is assumed to be small. In order to couple the surface discretisation with the
MPM solution, contact forces are mapped from the one-dimensional boundary to the four
node computational mesh via

F cont
i =

nc∑
j=1

N j
i F

inter
j , (2.52)

where, N j
i is the shape function of computational node i evaluated at the location of

boundary node j, nc is the number of contact nodes and F cont
i is the contact force expressed
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Figure 2.7: Schematic of the inclined plane problem

at the computational grid. Interaction of the bodies will contribute to the momentum
equation through the additional quantity expressed as

Miai = F ext − F int + F cont , (2.53)

where, M is the lumped mass, a the nodal acceleration, the subscript i refers to the grid
node and F ext and F int the external and internal force vectors, respectively.

2.6.9 Verification of Penalty Contact Algorithm

To demonstrate the accuracy of the algorithm, numerical solutions are compared to ana-
lytical ones from rigid body dynamics. To verify the contact algorithm, a simple test is
performed on the work of Bardenhagen et al. [8]. In the original work, a three-dimensional
sphere rolling down an inclined plane, has been simulated. Owing to the present two-
dimensional implementation, instead of a sphere, the problem of a cylinder rolling down an
inclined plane is simulated. For the test performed, CPDI, an improved version of MPM
is used, the same formulation that would be used in the later part of the Thesis for pile
installation application.

Figure 2.7 provides the schematic of the problem setup. The radius of the cylinder is taken
as 1.6m, and the length of the plane on which it rolls is modelled to be 20m long. A
thickness of 0.8m is assigned to the plane. The inclination of the plane is described as the
angle between the y-direction and that of gravity g, given by θ. The acceleration due to
gravity is taken as 10 m/s2 for all calculations.

In this simulation, the plane and the cylinder are both deformable. A plane-strain analysis
using a four-node regular cell of 0.4m size is performed. An irregular CPDI discretisation is
selected with overlapping domains, in which the maximum particle size is set as 0.2m. As
mandated by the proposed penalty algorithm, an interface layer is modelled and discretised
with a thickness of 0.001m, using two-node elements of size 0.1m. This yields a total of
517 linear segments. Discretisation of the sphere and plane is depicted in Figure 2.8. The
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Figure 2.8: Discretisation of inclined plane problem

sphere and the plane are modelled as compressible Neo-hookean hyperelastic bodies. The
cylinder has a bulk modulus of 6MPa, shear modulus of 3 MPa, and a density of 1000
kg/m3. These value roughly approximate those of natural rubber. The plane follows the
same elastic constants, but are multiplied by a factor of ten.

The tests are performed for two cases of inclination of plane. For the first case, the inclina-
tion angle θ = π/4, and the coefficient of friction is 0.495. This case is referred no-slip case,
as the rigid cylinder solution describes rolling without slipping. The position of centre of
mass for the rigid cylinder for this case is given by

x(t) = 5
√

2
3 t2, (2.54)

where, x describes the position along the plane at time t. The position of centre of mass
and the velocity for the no-slip and the velocity, are depicted in Figures 2.9 and 2.10,
respectively.
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Figure 2.9: Displacement of the centre point of the rolling cylinder for no-slip case
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Figure 2.10: Velocity of the centre point of the rolling cylinder for no-slip case

For the second case, the inclination angle is set at θ = π/3, and the corresponding coefficient
of friction is set as 0.286. In this case, the analytical solution describes rolling while sliding,
and is referred to as the slip case. For a rigid cylinder, the position of centre of mass is
given by

x(t) = 5
2

(√
3− 2

7

)
t2. (2.55)

The displacement and the velocity for the slip case is depicted in Figures 2.11 and 2.12,
respectively.
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Figure 2.11: Displacement of the centre point of the rolling cylinder for slip case
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Figure 2.12: Velocity of the centre point of the rolling cylinder for slip case

For the simulation of both cases, the initial gravity stresses are evaluated at zero inclination.
The plane and the cylinder are then suddenly tilted. In all Figures, the proposed method
along with Frictional contact algorithm is depicted for the purpose of comparison. It is
evident that the results obtained from the proposed penalty contact algorithm are in closer
agreement to the analytical solution than the frictional contact algorithm. The slower
motion in the frictional MPM contact is attributed to the initial position of the two bodies
between which no gap is assumed. In the formulation of frictional contact, the interaction
between the material points is initiated within the influence of one computational grid.
Resistance force is therefore overestimated until a gap is formed. This is illustrated in
Figure 2.8. It is observed from Figures 2.10 and 2.12 that although the velocity in both
slip and no-slip cases matches the analytical value in the beginning, the frictional contact
algorithm fails to represent the linear variation in velocity. The proposed penalty contact
algorithm represents the linear variation in velocity throughout the simulation, except in
the last part of the no-slip case (see Figure 2.10). The position of centre of mass for the
frictional contact algorithm does not match the analytical value exactly in both the cases
(see Figures 2.9, 2.11). This is attributed to the overestimation of contact force between
the bodies. In case of the proposed penalty contact however, the difference between the
analytical and numerical values are negligible.
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Chapter 3

Soil Modelling

3.1 Introduction

Constitutive modelling of natural structured sand has observed significant developments
in the past years in order to accurately reproduce soil behaviour. Mechanical behaviour
of granular soils, ranging from silt to gravel, can be modelled by different theories. Hy-
poplasticity, a constitutive theory suitable for modelling behaviour of frictional materials
is originally developed for granular materials like sand and gravel [65, 68]. Contrary to
elastoplasticity, no distinction of elastic and plastic deformation, yield and plastic potential
surfaces or hardening rules are needed.

Modifications have since been carried out for fine-grained soil in several works. Niemunis
[48] develops a rate-independent visco-hypoplastic model as a combination of hypoplasticity
with modified cam-clay yield conditions. Niemunis et al. [49] in his work further enhances
the model by the effects of strength anisotropy and irreversibility of the response within
the state boundary surface. Franzius et al. [20] demonstrates that improved predictions are
obtained in tunnelling problems by incorporating stiffness anisotropy. Herle and Kolymbas
[28] made modifications to the model proposed by von Wolffersdorff [65] in order to predict
the rate-independent behaviour of soils with low friction angles. This model is later refined
by Mašín [44] by reducing the number of parameters, and by considering the asymptotic
states which is a better representation of fine-grained soil behaviour. Subsequently, Weifner
and Kolymbas [66] develops a hypoplastic model capable of simulating the behaviour of both
sand and clay.

Hypoplasticity in its basic form cannot accurately predict the soil behaviour in small to very
small strain range. It is therefore unsuitable for predicting cyclic soil response. To overcome
this shortcoming, the model is extended and one of the approaches taken is for the model
to be combined with the intergranular strain concept [47], where the small strain stiffness is
also accounted for in the model by introducing an additional variable intergranular strain.
In this thesis, the model proposed by von Wolffersdorff [65] has been used along with its
extension to small strain stiffness along the work of Niemunis and Herle [47].
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Chapter 3 Soil Modelling

3.2 Hypoplastic model for Sand

This section presents a brief overview of the hypoplastic model for sand and its extension to
small strain stiffness. The material model of sand is based on the work of von Wolffersdorff
[65] and its extension to small strain stiffness, on the work of Niemunis and Herle [47].

3.2.1 Model Formulation

Hypoplasticity is an approach to non-linear constitutive modelling of geo-materials. Fol-
lowing from von Wolffersdorff [65], the hypoplastic constitutive relation in the rate form is
expressed as

σ̇ = G (σ, e, ε̇) , (3.1)
where, σ̇ is the Zareba-Jaumann stress rate tensor, ε̇ is the strain rate tensor, and e is the
current void ratio. The rate of void ratio is follows from

ė = (1 + e) tr (ε) . (3.2)

The general form of the tensorial function G is selected such that

σ̇ = Lε̇+N‖ε̇‖, (3.3)

where, L andN are the fourth-order linear and second-order non-linear constitutive tensors,
respectively. The term ‖ε̇‖ is the Euclidean norm of the strain rate tensor. For ease of
representation, Equation 3.3 is represented in index notation as

σ̇ij = Lijkl ˙εkl +Nij

√
˙εij ˙εij, (3.4)

with Lijkl and Nij being the linear and non-linear constitutive tensors, respectively. The
decomposition of functionG into a linear and non-linear tensors is performed to achieve the
inelastic behaviour of sand without having to decompose the strain into elastic and plastic
parts. Tensors Lijkl and Nij are functions of stress and void ratio. They are represented
as

Lijkl = fb fe
1

σ̂ijσ̂ij

(
f 2 δik δjl + a2 σ̂ik σ̂jl

)
, (3.5)

Nij = fd fb fe
af

σ̂ijσ̂ij

(
σ̂ij + ˆ̂σij

)
. (3.6)

The tensors σ̂ij and ˆ̂σij are the normalised stress tensor and the deviatoric stress tensor,
respectively. They are represented as

σ̂ij = σij
I1
, with I1 = σ11 + σ22 + σ33, (3.7)

ˆ̂σij = σ̂ij −
1
3δij. (3.8)
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Figure 3.1: Characteristic void ratios as a function of stress[65]

From Equation 3.5, the constant a is represented as

a =
√

3 (3− sinφc)
2
√

2 sinφc
, (3.9)

where φc is the critical state friction angle, and the factor f is represented as

f =

√√√√1
8 tan2 ψ + 2− tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (3.10)

where, cos 3θ is the Lode angle function and is given by

cos 3θ = −
√

6 tr( ˆ̂σ · ˆ̂σ · ˆ̂σ)[ ˆ̂σ : ˆ̂σ
]3/2 . (3.11)

tanψ is defined as
tanψ =

√
3 ‖ ˆ̂σ‖ . (3.12)

We define three characteristic void ratios namely, critical void ratio ec, the minimum
possible void ratio ed corrected to the corresponding density, and the maximum possible
void ratio ei corresponding to the minimum density. The variables ec0, ed0 and ei0 correspond
to the void ratios at vanishing pressure represented by the first stress invariant I1. The range
of possible void ratios are a function of stress is represented in Figure 3.1. From Equation
3.6, the factors fe and fd are represented as

fe =
(
ec
e

)β
, and fd =

(
e− ed
ec − ed

)α
(3.13)

with β and α being the input indices. From Equation 3.5, the pressure dependency of the
soil stiffness, represented by the factor fb is defined as

fb = hs
n

(1 + ei
ei

)(
ei0
ec0

)β (−I1

hs

)1−n [
3 + a2 −

√
3 a

(
ei0 − ed0

ec0 − ed0

)α]−1
, (3.14)
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where, hs is the pressure independent granular stiffness and n is an input index. The
characteristic void ratios are updated according to the relation

ei
ei0

= ec
ec0

= ed
ed0

= exp
[
−
(−I1

hs

)n]
. (3.15)

Finally, substituting Equations 3.5 and 3.6 into Equation 3.4, the final constitutive equation
is expressed as

σ̇ij = fbfe
1

σ̂ijσ̂ij

[
f 2ε̇ij + a2 (σ̂ikσ̂jl) ε̇kl + affd

(
σ̂ij + ˆ̂σij

)√
ε̇ij ε̇ij

]
(3.16)
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Figure 3.2: Stiffness dependency on mr and mT for the two ρ values[65]

32



3.2 Hypoplastic model for Sand

3.2.2 Extension to small strain stiffness

To predict the very small strain stiffness and recent stress history effects, the model is
combined with the intergranular strain concept [47]. The formulation is extended to account
for small strain stiffness, by introducing a new state variable called the intergranular strain
δ denoted by

δ =
∫
δ̇dt , (3.17)

where,

δ̇ =

(I − δ̂ ⊗ δ̂ρβr) : ε̇, for δ̂ : ε̇ > 0
ε̇, for δ̂ : ε̇ ≤ 0 ,

(3.18)

with, δ̂ being the direction tensor for the intergranular strain. It is defined as

δ̂ =

δ/‖δ‖, for δ 6= 0
0, for δ = 0 .

(3.19)

ρ is defined as the normalised intergranular strain magnitude defined as

ρ = ‖δ‖
R

. (3.20)

βr and R are intergranular strain concept parameters. The constitutive relation of the
extended hypoplastic model is written as

σ̊ = M : ε̇ . (3.21)
The stiffness tensor of the intergranular strain concept formulation M is constructed from
tensors L and N and is modified by two scalars mT and mR. The tensor is represented
as

M = [ρχmT + (1− ρχ)mR]L

+

ρχ (1−mT )L : δ̂ ⊗ δ̂ + ρχNδ̂, for δ̂ : ε̇ > 0 ,
ρχ (mR −mT )L : δ̂ ⊗ δ̂, for δ̂ : ε̇ ≤ 0 .

(3.22)

In index notation, Equation 3.22 is written as
Mijkl = [ρχmT + (1− ρχ)mR]Lijkl

+

ρ
χ (1−mT )Lijmn

(
δ̂mkδ̂nl

)
+ ρχNikδ̂jl, for δ̂ij ε̇ij > 0 ,

ρχ (mR −mT )Lijmnδ̂mkδ̂nl, for δ̂ij ε̇ij ≤ 0 ,
(3.23)

with, variables mR and mT defined as

mR = prAg

(
p

pr

)ng 4AmαG
2pαE

(
λ∗κ∗

λ∗ + κ∗

)
1(

1− νpp − 2αE
α2
ν
ν2
pp

) , (3.24)

mT = mrat mR. (3.25)
The variables mR and mT depend on ρ as shown in Figure 3.2. Variables χ and mrat are
the intergranular strain concept parameters. Ag and ng are parameters quantifying the
dependency of shear modulus at very small strain on mean effective stress parameter.
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3.2.3 Constrained Modulus Calculation

For the MPM formulation, time integration of momentum equation is restricted by the
CFL (Courant, Friedrichs and Lewy) condition where the critical time step is bound by
the characteristic length of the element and the wave speed of the material. This condition
requires the constrained modulus Ec to calculate the wave speed and ultimately, the size
of critical time step. We consider the case of one-dimensional straining similar to that of
oedometer test. We take all the components in the strain rate tensor equal to zero except
ε̇22. For the sake of simplicity, the stresses are assumed to be isotropic and are given by

σ̂ij = 1
3δij, and ˆ̂σij = 0. (3.26)

The above values are obtained given that σ̂ijσ̂ij = 1
3 . Given these conditions, and with

ψ = 0 and f = 1, it is shown that

L = fb fe

(
3 + a2

3

)
, and (3.27)

N = a fb fd fe (3.28)
With L and N being the components of the tensor Lijkl and Nij, respectively. This corre-
sponds to ε̇22 6= 0. The constrained modulus thus becomes

Ec = L∓N, (3.29)

with the minus and plus sign indicating the loading and unloading conditions, respectively.
This yields the constrained modulus

Ec = [ρχmT + (1− ρχ)mR]L

+

ρχ (1−mT )L+ ρχN, for δ̂ij ε̇ij > 0 ,
ρχ (mR −mT )L, for δ̂ij ε̇ij ≤ 0 .

(3.30)

3.3 Model verification - Element test and Footing
Problem

To validate the FORTRAN implementation of the model, a compression test similar to
biaxial test for the sand model is performed. Triaxial test is a common method to measure
the mechanical properties of deformable solids, especially soil, rock and other granular
materials. Plane-strain biaxial test on the other hand, is not commonly performed in soil
mechanics laboratory tests, as they are more complex compared to triaxial tests. Due to
the formulation of the finite element code, which supports two-dimensional test, this test
is performed. The numerical validation of the soil model is carried out assuming drained
condition.
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Figure 3.3: Initial configuration for soil compression test

A schematic representation of the initial configuration is represented in Figure 3.3. A
material of width and height of 1m, respectively, is supported by roller supports at the
bottom and a force of 50kN is applied on both the left and right nodes of the element.
An initial uniform stress field is applied of σx = σy = σz = −100kN/m2 is applied to the
material initially. A prescribed displacement is then provided in the vertical direction from
the top of the material. The material parameters used for both the tests used in the FE
program and PLAXIS is tabulated in Table 3.1.

Variable Value Variable Value
φc 30◦ α 0.13
pt 1.6 β 1.0
hs 5.8E6 mR 10.0
n 0.28 mT 2.0
ed0 0.53 R 5.0E-5
ec0 0.84 βr 0.3
ei0 1.0 χ 1.0
e0 0.65

Table 3.1: Material properties for constitutive model for sand
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The result of the test can be observed in Figure 3.4, where the comparison of results between
FEM and PLAXIS under similar conditions is plotted. From the graph it is observed that
the material model’s Fortran implementation performs reasonably well, and yield results
close to the ones obtained from the Plaxis element test. It is observed that the usage of the
material model in finite element code would thus yield satisfactory results.

Fortran Finite Element Program
Plaxis

Vertical Strain

q
k
N
/m

2

Figure 3.4: Deviatoric stress response over vertical strain application
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Pile Penetration

4.1 Introduction

Pile driving is an installation method practised in the field of offshore foundation engineer-
ing. The fundamental aspects of pile analyses still rely on empirical correlations based on
experimental observations from laboratory and full scale in-situ testing [54]. The investi-
gations are often carried out using instrumented piles allowing for a direct quantification
of the base pressure and the shaft friction. Conventional FE method is traditionally used
to predict the behaviour of pile and the soil [43]. As the simulation of pile driving involves
large deformation, this causes mesh entanglement due to extreme mesh distortion. Among
the alternates to FEM, MPM is widely used to simulate large deformation, and hence is
used to simulate the problem of pile penetration.

A one-dimensional wave equation model for pile-driving analysis, in which the pile is repre-
sented by discrete elements and the soil, by a series of springs and dashpots is presented by
Lee et al. [34]. This method though was widely used, the results were not accurate enough
due to the one-dimensional approximation of the soil response. For realistic prediction of
soil and pile behaviour, a three-dimensional or axi-symmetric analysis is required to cap-
ture the stress waves being transferred from the pile to the soil, and to properly model the
interaction between the pile and soil.

Smith and Chow [57] performs a axi-symmetric simulation of pile driving in clay. A con-
siderable difference in results is reported in comparison to the one-dimensional analysis.
Mabsout and Tassoulas [43] performs a detailed analysis of pile driving using finite element
technique. A non-linear axi-symmetric solution is developed, taking into account the large
deformations that occur in the soil during the course of pile-driving. Bounding surface
plasticity is adopted to model the inelastic behaviour of clay, with a frictional contact al-
gorithm to characterize the interaction between pile and the clay. Transmitting boundaries
are added to the soil in the far field boundaries to absorb the radiating waves resulting
from the driving blow of the hammer. The hammer blow is simulated by a transient forcing
function applied at the top of pile. Henke and Grabe [27] analyses different methods of pile
driving like pile-jacking and vibratory pile driving. The influence of pile driving on adjacent
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structures is also examined [26].

As an alternate to FEM, MPM is introduced and successfully applied in geotechnical ap-
plications such as cone penetration [10], pile penetration simulation [38] and spudcan sim-
ulation into the seabed [37].

4.2 Modelling pile installation

In this section, the installation of a pile being driven into a hypoplastic model of sand is
simulated. The focus is investigation of the performance of the proposed penalty contact
algorithm in the framework and CPDI, and compare the results with a similar simulation
carried out in ABAQUS.

4.2.1 Dimensions and Parameters

The modelling of the pile is carried out as an axi-symmetric finite element problem. This
modelling technique is justified by the assumption of vertical penetration of pile. A schematic
of the problem is presented in Figure 4.1. In this section, two pile installation problems
are modelled, one making use of the conventional frictional MPM contact, and the other in
which the penalty contact method is implemented. The dimensions and material properties
of both these cases are similar, barring the contact algorithm.

For the initialisation of the problem, a 10 X 5 m axisymmetric soil domain is assumed. The
constitutive model for the soil is chosen as hypoplastic sand, whose numerical formulation
is extensively explained in Chapter 3. The density of the soil is taken as ρs = 2600kg/m3.
An initial void ratio of 0.65 is assumed for the soil. This represents now a dense sand. The
material parameters of the soil are given in Table 4.1.

The pile is modelled as an elastic entity with a high modulus of elasticity. It is assumed
to be 5m in length with a radius of 0.15m and the tip of the pile is rounded. The pile is
initially placed on the surface of the soil. The pile is assigned an elastic modulus of 100MPa
and a Poissons’s ratio of 0.28. A density of ρp = 2500kg/m3 is assigned to the pile. A low
stiffness is assigned to the pile in order to aid in speeding up the computation. Globally,
the gravitational acceleration is rounded off to 10 m/s2 and is assigned to the system.
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Figure 4.1: Dimensions and Mesh of Pile and Sand Assembly

Variable Value Variable Value
φc 30◦ α 0.13
pt 1.6 β 1.0
hs 5.8E6 mR 10.0
n 0.28 mT 2.0
ed0 0.53 R 5.0E-5
ec0 0.84 βr 0.3
ei0 1.0 χ 1.0
e0 0.65

Table 4.1: Hypoplastic sand model parameters
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Figure 4.2: Time period of blows

4.2.2 Boundary Conditions

On the bottom of the domain, a fully fixed boundary condition is imposed, and along the
vertical boundary on the outer edge, roller supports are imposed. Hamad [23] in his work
notes that roller supports may be applied to the inner edge as well, but it does not have
any impact on the outcome of the result. A friction coefficient of µ = 0.2 is assigned for
contact in case of both the classical frictional contact and penalty contact. A periodic load
of 1000 kN/m2 for a duration of 0.1 sec is applied on the top of the pile 4.2. The period of
hammer blow is 0.5 sec. The simulation is carried out for a total of 12 seconds, 2 seconds
for gravity loading and 10 seconds for dynamic loading.

4.2.3 Meshing

The 2D axisymmetric model is prepared in GiD preprocessor with a computational mesh
size of 0.125 cm, containing a total of 10,432 particles, and for the case of Penalty contact
algorithm, an additional 528 two-node elements are meshed. A total of 3,444 elements
are meshed for the background computational mesh. A regular four-node quadrilateral
discretisation is adopted for the computational mesh. In order to refine the number of
material points near the pile, a non-regular distribution of material points is implemented.
As a result, overlapping rectangles and squares of initial particle domain is observed near
the tip of the pile, as shown in Figure 4.3. This overlaps, however, is avoided for the regular
soil domain. Using this procedure, particle size can be as big as two computational elements
in the zone where there is little variation. This aids in saving computational time.

For the treatment of penalty contact, an additional two-node linear segments are modelled
to handle the contact between two bodies. A thickness of less than 1% of entity thickness
is usually assumed, in this case a thickness of 0.001m is assigned to both the pile and
the soil interface element. In addition to thickness, normal and tangential stiffness is also
assigned to the elements. This can take the same value as the elastic stiffness where the
nodes are attached, in this case, 100MPa is assigned. It must be noted that exceeding
the maximum stiffness of the system would affect the stability of the explicit integration
procedure. Conversely, penetration might occur if the normal stiffness is reduced excessively.
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Figure 4.3: Overlap of particle domains near the tip

Figure 4.4 shows the additional interface element introduced in the case of penalty contact.
It is to be noted that the interface element is modelled in areas where there potentially will
be contact and not modelled throughout the model, as the potential contact zone is known
apriori.

Once the boundary conditions are specified, and the model meshed, the model is then
solved. The model is solved in a total of two phases, a gravity loading phase and the
dynamic loading phase. In the gravity loading phase, the gravity load is applied gradually
over a time period of two seconds. Once the gravity stresses have been obtained, the pile is
then hammered into the soil by activating the dynamic traction load qper (Figure 4.2).

Particle Domains Interface Element Mesh

Figure 4.4: Interface element mesh for the corresponding particle domains
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To obtain reference solution, as stated previously, a commercial FE package ABAQUS is
used. To simulate large deformation during pile installation, the standard FE formulation
will not be helpful. Instead, a Coupled Eulerian-Lagrangian approach is adopted. While
modelling the installation process in ABAQUS, the pile is assumed to rigid, hence the pile
is assigned as analytically rigid, thus becoming the Lagrangian part. For modelling the
soil, a two step approach is followed. First, the soil body is created as a Lagrangian part.
Subsequently, an Eulerian part, slightly bigger at the surface of the soil is created. This
additional area is created to accommodate soil heaving during the pile installation process.
The volume fraction to the Eulerian body is assigned to the extent of the Lagrangian body,
and thereafter the Lagrangian soil part is suppressed. Material data is then assigned to
the Eulerian soil part, the rigid pile along with the soil is then assembled, after assigning
appropriate displacement and traction boundary conditions.

4.3 Results and Comparison

In this section, results have been compared to show the difference between the classical fric-
tional MPM contact and penalty contact. In addition to MPM calculations, a simulation in
ABAQUS is also carried out to draw comparisons between the results. The pile installation
simulation in classical MPM formulation is comparable to the formulation elaborated by
Hamad [23].

Initially, gravity stresses are built up gradually over a time period of 2 seconds. At the end
of gravity loading step, a penetration depth of 0.25m is obtained for the case of classical
frictional contact, as opposed to a penetration depth of 0.37m for the penalty contact
algorithm. Due to the frictional contact algorithm overestimating the resistance force, a
lower penetration is obtained in this case.

At the end of the gravity loading step, a vertical stress of -170 kN/m2 is obtained. Figure
4.5 represents the stress distribution in soil and pile assembly in both the MPM calculations,
as well as from the ABAQUS simulation. In classical frictional MPM contact, the stress
oscillation at the tip is affected by refinement of the contact interface. It is also to be noted
that the stress oscillation in the penalty contact algorithm is less pronounced as compared
to the classical contact algorithm.
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Frictional MPM Contact Penalty Contact ABAQUS Penalty Contact

Figure 4.5: Vertical stress comparison after gravity loading ; blue represents value of -170
kN/m2

After obtaining the gravity stresses, the pile is hammered into the soil by activating the
dynamic traction load qper (see Figure 4.2). Due to high shear resistance along the pile shaft,
the particle domains are heavily distorted in this region. Inspite of the hypoplastic model
being developed upon the Matsuoka-Nakai criterion, a clearly defined failure surface is not
obtained. Alternatively, the mobilised friction angle, a state variable in the hypoplastic
sand model can be considered as an equivalent to the failure criterion. This corresponds
to an upper limit of the critical friction angle φc. One region where failure is observed is
under the pile which is highly compressed. It is observed that some material points exceed
the critical angle of 30◦, but most of these regions return back to the unloaded state within
0.05sec. Furthermore, non-homogenous variation of friction angles in the soil beneath the
pile is observed. This is due the stress waves bouncing off the rigid boundary. This is more
pronounced in material models dependent on stress levels, such as present case. Figure 4.6
depicts the mobilised friction angle during one blow of loading and unloading.
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Classical MPM Contact Penalty Contact Abaqus Penalty Contact

qper

Loading

qper

Unloading

Figure 4.6: Friction angle comparison in loading-unloading of one blow ; blue represents
zero, and red represents a value of 40◦
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Frictional MPM Contact Penalty Contact ABAQUS Penalty Contact

Figure 4.7: Void ratio comparison ; blue corresponds to a void ratio of 0.35 and red repre-
sents the initial value of 0.65

Another crucial part of simulating the installation process is the soil-pile interaction, espe-
cially in the case where the material exhibits high non-linearity. Incorporation of hypoplastic
model shows that influence of predicting the volume change in the soil is limited to narrow
zone close to the pile [2]. From Figrue 4.5, it is evident that the stresses are distributed in
the vicinity of the pile, supporting the applicability of the contact algorithm that has been
implemented in this work.

Due to the initial dense state of the soil, there is dilation around the pile due to high shear
stresses. During the oscillatory movement of the pile during the dynamic loading phase,
the zone near to the pile is heavily densified. From a practical view, the size of the influence
zone in the case of classical MPM contact is overpredicted. To improve the result, a finer
discretisation can be made around the shaft of the pile where high shear stresses occur.
This comes at a increased computation and storage cost. These noises are attributed to
the MPM contact and is more visible because of the high variation in stiffness between
the interacting bodies. In case of the penalty contact, this variation in distribution of
void ratio is more smooth. This is attributed to reduced noises in the contact algorithm
due to the proposed mapping procedure of the contact forces to the computational grid,
and provides a weighted average of the interface forces, eventually producing fairly smooth
contact stresses. Results obtained from ABAQUS is also comparable to that obtained from
the penalty contact algorithm (see Figure 4.7).
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Figure 4.8: Depth of penetration of pile during dynamic loading stage

Another results that is discussed is the depth of penetration of pile in the three cases of
frictional MPM contact, the penalty contact and the ABAQUS penalty contact simulations
(see Figure 4.8) during the dynamic loading stage. It is evident that the results obtained
from the proposed penalty contact algorithm are in agreement to a similar simulation
performed in ABAQUS. A penetration of depth of 3.3m is obtained in the case of both
ABAQUS simulation and Penalty MPM contact algorithm, as opposed to a penetration
depth of 2.2m in the case of frictional contact algorithm. In the formulation of frictional
MPM contact, the detection of material points’s interaction is initiated within the influence
of one computational grid. The resistance force is therefore overestimated, thereby yielding
lower penetration depth. In the case of penalty contact however, resisting contact forces are
established in three steps. Once it is confirmed that different discretisations contribute to
the same computational node, elements attached to this node are tagged as those that can
potentially be in contact. Between these elements, the search algorithm checks whether the
slave node penetrates into the master segment, and once this is confirmed, a resisting force
proportional to the depth of penetration is evaluated. The contact forces are mapped from
the one-dimensional boundary mesh to the four-node computational mesh. This ensures
that the resisting force is not overestimated, and the results obtained Figure 4.8 also suggests
that the same.

Finally, a comparison of radial and axial stresses after 10 blows and 20 blows of the pile
between the frictional contact algorithm, the penalty contact and the ABAQUS simulation
is depicted via contour plots in Figures 4.9 and 4.10. It is inferred from the results that
the penalty contact algorithm yields results more close to those obtained from ABAQUS
simulation, than the frictional contact algorithm.
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After 10 blows

After 20 blows

Frictional Contact Penalty Contact ABAQUS Penalty Contact

Figure 4.9: Radial stress comparison ; blue corresponds to a value of -120 kN/m2
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After 10 blows

After 20 blows

Frictional Contact Penalty Contact ABAQUS Penalty Contact

Figure 4.10: Vertical stress comparison ; blue corresponds to a value of -170 kN/m2
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Chapter 5

Summary of the Thesis and Future work

The concluding remarks made in this chapter is with respect to the work described in this
Thesis. As the title of the Thesis suggests, the work focussed on improving the present
frictional contact algorithm for betterment of analysis using the Material Point Method.

In the scheme implemented in the work, the penalty function method is reformulated in the
framework of CPDI, an improvement over MPM. The surface of the continuum is discretised
separately from the MPM so that contact between different entities can be performed
accurately. This is achieved by discretising the interface elements with two-node linear
segments. A minuscule thickness is also assigned to the surface so that mass is allocated to
the surface nodes according to the density of the continuum. Bookkeeping of the surface
nodes is separated from the material points database. The penalty function method is then
applied on this interface surface to evaluate the contact forces between two entities. The
coupling between the background computational discretisation and the interface mesh is
achieved by adding the contact forces as an external force to the momentum equation. The
numerical formulation of CPDI and the Penalty contact is presented in Chapter 2.

In Chapter 3, the numerical formulation of hypoplastic soil model following vonWolffersdorff
[65] is presented. It’s extension to small-strain stiffness to account for intergranular strain
is present along with the constrained modulus calculation, which is required to calculate
the wavespeed, and ultimately, the size of the critical time step in CPDI setting. An biaxial
element test of the constitutive model is performed in a finite element program and is
compared with the results obtained from a Commerical finite element package, PLAXIS, in
order to evaluate the applicability of the soil model for further simulations, and the results
obtained are comparable.

With the contact algorithm proposed in Chapter 2, a pile installation problem is simulated
and the results are compared with simulations using a classical MPM contact, as well as a
simulation carried out in a commercial finite element package ABAQUS. Here, the results
from the pile installation simulation are compared and it is evident that the proposed
penalty contact algorithm estimates the behaviour much closer to the ABAQUS results
than the classical MPM contact. The penetration depth which the proposed penalty contact
algorithm outperforms the frictional contact algorithm, the friction angle is also compared
as an equivalent to the failure criterion. Void ratios from the simulations are also presented
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to monitor the densification of soil during the during loading process. The results indicate
that the penalty contact is more comparable to ABAQUS simulation than the frictional
MPM contact. Finally, the penetration depth during the dynamic loading stage of all the
simulations are presented and the results suggests the the penalty contact yields closer
results to the ABAQUS simulation.

Future work will investigate the use of rigid contact between the pile and the soil body.
Implementing this method would eliminate the need for material point discretisation within
the pile. This would assist in reducing the computational cost of the simulation. Future
work would also dwell on simulating pile installation in an soil using hypoplastic clay ma-
terial model. Pile installation in an undrained soil condition is also of interest as it would
simulate more closely the offshore conditions.
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Appendix A

Continuum Mechanics

A.1 Continuum Mechanics
We define an initial reference configuration of a continuous body Ω0 enclosed with a bound-
ary Γ0 at time t0 in a reference configuration. The body is subjected to a motion and as a
result, the body deforms to the current configuration Ω with a boundary Γ corresponding
to time t. The position of a certain point belonging to the reference configuration is defined
by X, whereas x denotes the position in the current configuration. Due to the motion, the
displacement of the field can be traced giving the two deformation configurations as shown
in Figure A.1.

A.1.1 Displacement Field
The displacement field of a particle relates its position in the undeformed configuration to
its position in the deformed configuration. This is denoted by

u (x, t) = x (X, t)−X, (A.1)

where, u is the displacement vector. It is represented in index notation as ui with i ∈
(1, 2, 3), time t ∈ [t0, tf ], with t0 and tf being the initial and final time, respectively. An
alternate definition is provided for the displacement if the deformed configuration x is the
independent variable instead of the reference configuration X.

A.1.2 Velocity and acceleration field
In solid mechanics, the motion and the deformation of a continuum body are described in
terms of the displacement field. Primary field quantities describing the kinematic properties
can be the velocity field and the acceleration field as well. Velocity v is defined as the rate
of change of position vector for a material point. Acceleration is defined as the second
derivative of the displacement vector. Applying the above definitions to Equation A.1 and
using the chain rule of differentiation, we obtain the following vectors

dui
dt

= vi,
dvi (xi, t)

dt
= ∂vi

∂t
+ vj

∂xi
∂xj

, (A.2)

where d implies the substantial derivative consisting of both the local and convective term.
In case of updated Lagrangian formulation, the last term is neglected as the material de-
formation is tracked. There is therefore no distinction between the derivatives with respect
to X or x.
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Figure A.1: Configuration of a continuum body

A.1.3 Strain

The strain εij is a second order tensor and is defined as the normalised deformation with
respect to a reference length. It is easier to represent the strain tensor in a vector form
exploiting the property of symmetry of the strain tensor. It is represented as

ε = [ε11 ε22 ε33 2ε12 2ε23 2ε13]T , (A.3)

where, the vector in Equation A.3 contains the total strain components. For material
modelling, a rate form of strain is usually considered ε̇. It is given as the symmetrical part
of the velocity gradient, depicted as

εij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (A.4)

The strain is either recognised as Lagrangian or Eulerian, depending on whether it is based
on the reference or the current configuration, respectively. For a rigid body motion, it is
clear that there must be no strain in the system, if otherwise leads to development of stress.

A.1.4 Stress

Stress develops through a continuum as a result of deformation. Stress applied on the
current configuration is characterised by the Cauchy stress tensor. The stress tensor is
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represented as

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (A.5)

Cauchy stress tensor is symmetric, and therefore has six independent stress components
acting at a certain point in the body. It can be represented in a vector form as well
exploiting its symmetry and is given by

σ (x, t) = [σ11 σ22 σ33 σ12 σ23 σ13]T . (A.6)

Cauchy stress is also regarded as the true stress as it refers to the deformed configuration.
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